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1 Numerical Integration

The subject matter of Numerical Integration is evaluate the definite integral
I= fab f(z)dz.

The method of numerical integration or Quadrature are simple and a number
of methods or rules have been developed. A quadrature formula is said to be
closed type, if the limits of integration a and b are taken as interpolating points,
otherwise the formula is called open type.

2 basic Concept of Quadrature

The definite integral f: f(x)dx is interpreted as the area of the plane region
bounded by the curve y = f(x), the x axis and the two ordinates are a and b.
The area may conveniently be evaluated by subdivision of the area into parts
by division of the interval [a,b] and then summation of the components areas.
The additive property of the definite integral is explored to evaluate a definite
integral in a piecewise seance. This is sometimes called the composite Rule.

3 Degree of Precision in a Quadrature formula

Let the values of the function f(x) be known for a set of equispaced values of
T,04 = Xy, X1, To,...Ln = b. Also, let f(z) be approximated an interpolation
polynomial ¢(zx), such that ¢(z;) = f(x;),1=0,1,2,3,....

Then [ f(z)dz = [° ¢(x)dx + R,

so that r = fab f(z)dx — f(f ¢(x)dz, is known as the error of integration.
In this connection arises the idea of degree of precision.
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4 A general Quadrature formula for equispaced
arguments
As before, let the values of y = f(x) corresponding to the values of equispaced

arguments a = g, T1, T2, ..., £, = b be known to be yo, y1, Yo, ..., Yy, respectively.
Then Newton’s Forward interpolation formula gives
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where x; = 29 +th, 1 =1,2,3,... and x = xg + uh.
Integrating noth side with respect to x, between the limits x( to z,,, we have
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Since x = xg + uh, u = 0, when z = 29 and u = n when = = x,,, then
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This is called general quadrature formula, known as Gauss-Legendre quadra-
ture formula. from this, we can derive a number of integration formula by
putting n =1,2,3,....

5 Trapezoidal Rule

We shall deduce the Trapezoidal Rule from the general quadrature formula.
putting n=1 in (1) and rejecting all differences above the first one, we have
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The interval of integration being [xg, x1], there are only two functions values yq
and y1, and with two values the only non zero difference is of the first order and
higher order differences vanish.
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Adding all these
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This is called Trapezoidal Rule.
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